Modulation of the biological activity of a tobacco LTP1 by lipid complexation.

نویسندگان

  • Nathalie Buhot
  • Eric Gomès
  • Marie-Louise Milat
  • Michel Ponchet
  • Didier Marion
  • José Lequeu
  • Serge Delrot
  • Pierre Coutos-Thévenot
  • Jean-Pierre Blein
چکیده

Plant lipid transfer proteins (LTPs) are small, cysteine-rich proteins secreted into the extracellular space. They belong to the pathogenesis-related proteins (PR-14) family and are believed to be involved in several physiological processes including plant disease resistance, although their precise biological function is still unknown. Here, we show that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid. This LTP1 binds to specific plasma membrane sites, previously characterized as elicitin receptors, and is shown to be involved in the activation of plant defense. The biological properties of this LTP1 were compared with those of LTP1-linolenic and LTP1-jasmonic acid complexes. The binding curve of the LTP1-linolenic acid complex to purified tobacco plasma membranes is comparable to the curve obtained with LTP1. In contrast, the LTP1-jasmonic acid complex shows a strongly increased interaction with the plasma membrane receptors. Treatment of tobacco plants with LTP1-jasmonic acid resulted in an enhancement of resistance toward Phytophthora parasitica. These effects were absent upon treatment with LTP1 or jasmonic acid alone. This work presents the first evidence for a biological activity of a LTP1 and points out the crucial role of protein-specific lipophilic ligand interaction in the modulation of the protein activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress

Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...

متن کامل

Transcriptional Response of Structural and Regulatory Genes Involved in Isoprene Biosynthesis and its Relation to Essential Oil Biosynthesis in Response to Salicylic Acid and Abscisic Acid in Mentha piperita L.

Background: In peppermint, precursors for the biosynthesis of monoterpenes are provided by plastidial methyl-erythritol-phosphate (MEP) pathways. Objective: In order to increase our understanding of terpene metabolism in M. piperita, the effect of salicylic acid (SA) and abscisic acid (ABA) in the modulation of expression pattern of genes involved in essential oil biosynthesis and secretion wa...

متن کامل

In-vitro – In-vivo Characterization of ‎Glimepiride Lipid Nanoparticulates ‎Prepared by Combined Approach of ‎Precipitation and Complexation

Novel lipid nanoparticulates (NCs) were developed by a combined approach of precipitation and complexation with an aim to improve the solubility, stability and targeting efficiency of glimepiride (GLP). GLP NCs were prepared by precipitation process using PEG 20000 and further complexed with phospholipon90G (P90G). The NCs were evaluated for physicochemical characterization, such as drug lo...

متن کامل

Effects of exogenous ornithine enantiomers on tobacco cells under salinity conditions

Ornithine is a non-proteinogenic amino acid, which plays an essential role in the metabolism of plants. Regard to the chirality of the molecule, physiological response of the plant cells to its two enantiomers have not been widely investigated yet. In the present study, suspension-cultured tobacco cells were treated with 1 mM of D- and Lenantiomers of ornithine in normal conditions as well as u...

متن کامل

Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein.

The refined structure of a wheat type 2 nonspecific lipid transfer protein (ns-LTP2) liganded with l-alpha-palmitoylphosphatidylglycerol has been determined by NMR. The (15)N-labeled protein was produced in Pichia pastoris. Physicochemical conditions and ligandation were intensively screened to obtain the best NMR spectra quality. This ns-LTP2 is a 67-residue globular protein with a diameter of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 2004